Media planning guide and editorial calendar

2013
Carbon capture and storage is a rapidly growing industry

According to the Global Carbon Capture and Storage Institute, there are currently 70 large scale integrated carbon capture projects happening around the world, with 32 in North America, 20 in Europe, 7 in Australasia, 5 in China, 3 in the UAE, in 2 in South Korea and 1 in Algeria.

This means that if you sell products and services applicable to carbon capture, now is a good time to make your mark on the market - and there's no better way to do it than by advertising in Carbon Capture Journal.

Our magazine and newsletter arrive on the desks and desktops of 8,000 carbon capture professionals, all of whom have personally filled in our registration form. This means that everything we send is requested and our list is perhaps the best carbon capture and storage mailing list in the world.

By region, our circulation is 35% in North America, 24% in North Europe, 12% in West Europe, 9% in East Asia, 6% in Australasia, 4% in South Europe, 4% in Southern Asia, 2% in East Europe, 2% in South East Asia.

Our readers are in engineering 11%, energy industry 9%, oil companies 6%, students 14%, government 14%, vendors 11%, consulting 10%, research 4%, reaching 3%, press 2%, finance 2%, others 10%.

If you think carbon capture and storage market holds potential for your company, come and talk to us.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Review of 2012</td>
<td>Focus on Canada</td>
<td>Focus on US</td>
</tr>
<tr>
<td>Focus on UK</td>
<td>Special topic: Co2 transport</td>
<td>Special topic: CO2 compression technology review</td>
</tr>
<tr>
<td>Special topic: CO2 storage and transportation</td>
<td>CCS in the oilsands</td>
<td>Improving post-combustion efficiency</td>
</tr>
<tr>
<td>CO2 enhanced oil recovery</td>
<td>CO2 shipping</td>
<td>CCS in developing countries</td>
</tr>
<tr>
<td>Geological storage safety</td>
<td>Pipeline integrity</td>
<td>CCS in the Clean Development Mechanism</td>
</tr>
<tr>
<td>Storage capacity estimation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monitoring and verification</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ad copy deadline: Dec 14 2012</td>
<td>Ad copy deadline: Apr 10 2013</td>
<td>Ad copy deadline: Aug 14 2013</td>
</tr>
<tr>
<td>Publication date: Dec 19 2012</td>
<td>Publication date: Apr 15 2013</td>
<td>Publication date: Aug 19 2013</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Issue 32 - March/April 2013</th>
<th>Issue 34 - July/August 2013</th>
<th>Issue 36 - November/December 2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Focus on EU</td>
<td>Focus on Australia</td>
<td>Focus on Asia</td>
</tr>
<tr>
<td>Special topic: Equipment including pumps and valves, scrubbers</td>
<td>Special topic: Special topic: boiler techniques including oxyfuel and CFB</td>
<td>Special topic: CO2 re-use technology</td>
</tr>
<tr>
<td>Developments with non-amine capture</td>
<td>Latest developments with amines</td>
<td>Revenue streams from CO2 use</td>
</tr>
<tr>
<td>Materials for CO2 capture</td>
<td>Ionic membrances</td>
<td>Carbon mineralisation technology</td>
</tr>
<tr>
<td>Influencing public opinion</td>
<td>CO2 capture retrofit</td>
<td>CO2 industrial re-use</td>
</tr>
<tr>
<td>Ad copy deadline: Feb 13 2013</td>
<td>Ad copy deadline: June 12 2013</td>
<td>Ad copy deadline: Oct 16 2013</td>
</tr>
<tr>
<td>Publication date: Feb 18 2013</td>
<td>Publication date: June 17 2013</td>
<td>Publication date: Oct 21 2013</td>
</tr>
</tbody>
</table>

* Dates are subject to change
Carbon capture and storage (CCS) is a process for capturing carbon dioxide (CO₂) emissions from industrial processes or power plants, then transporting the CO₂ to a secure underground location for long-term storage. This process is often considered as a means of addressing climate change by reducing the amount of CO₂ released into the atmosphere.

Pipelines are the primary means for transporting CO₂ for storage. They are typically made of materials such as steel, which must be carefully selected and treated to ensure they maintain their structural integrity under the high pressures and temperatures involved in CO₂ transportation. Pipeline steels show a ductile-to-brittle transition behaviour of CO₂ from a pipeline defect. A detailed discussion on the decompression and depressurization of CO₂ pipeline failures is necessary, as rapid depressurisation may affect the pressure of the escaping gases.

The CO₂ Capture Technology Development Plant (TDP) in Cubillos del Sil is next to the oldest operating power station in Spain, Endesa. The TDP will be available for any interested institutions to use. Companies can come here, take a look, and do their own R&D work, explained Pedro Figueredo, CIUDEN's director of International Communication. CIUDEN's installation is unique in that it is designed to be extremely flexible in the use of different fuel types. It is an oxyfuel combustion test bed, but it is also used to capture CO₂ with a range of different fuel types. The Technology Development Centre for CO₂ Capture in Cubillos de Sil, Leon, was founded five years ago to promote economic development in the relatively poor region of Spain, with programmes covering the whole assessment, development and innovation stages and the complete R&D chain. CIUDEN - city of energy in Spanish, boasts the Museum of Energy and collaborating with several research organisations as well as from the Australian universities and researchers from other countries, to chemically analyse samples donated by the team to tackle some of the key outstanding issues associated with industries including coal mining, oil and gas extraction, and the conversion of existing coal-fired power stations to use.

Although CO₂ pipelines will be the primary means for transporting CO₂ for storage, it is often considered that other modes of transport, such as trucks and ships, may be used in certain cases. Transport and storage of CO₂ is a complex process that involves multiple variables, such as temperature, pressure, and the type of pipeline material.

The CO₂CRC Otway Project involves research into geological storage of carbon dioxide. The project has been demonstrated in Victoria, Australia, and it is aimed at tackling some of the key outstanding issues associated with industries. The project involves the transport of CO₂ in the offshore environment and highlights the need for pipeline failure, rapid depressurisation may affect the pressure of the escaping gases. Companies can come here, take a look, and do their own R&D work, explained Pedro Figueredo, CIUDEN's director of International Communication. CIUDEN's installation is unique in that it is designed to be extremely flexible in the use of different fuel types. It is an oxyfuel combustion test bed, but it is also used to capture CO₂ with a range of different fuel types. The Technology Development Centre for CO₂ Capture in Cubillos de Sil, Leon, was founded five years ago to promote economic development in the relatively poor region of Spain, with programmes covering the whole assessment, development and innovation stages and the complete R&D chain. CIUDEN - city of energy in Spanish, boasts the Museum of Energy and collaborating with several research organisations as well as from the Australian universities and researchers from other countries, to chemically analyse samples donated by the team to tackle some of the key outstanding issues associated with industries including coal mining, oil and gas extraction, and the conversion of existing coal-fired power stations to use.

The CO₂CRC Otway Project involves research into geological storage of carbon dioxide. The project has been demonstrated in Victoria, Australia, and it is aimed at tackling some of the key outstanding issues associated with industries. The project involves the transport of CO₂ in the offshore environment and highlights the need for pipeline failure, rapid depressurisation may affect the pressure of the escaping gases. Companies can come here, take a look, and do their own R&D work, explained Pedro Figueredo, CIUDEN's director of International Communication. CIUDEN's installation is unique in that it is designed to be extremely flexible in the use of different fuel types. It is an oxyfuel combustion test bed, but it is also used to capture CO₂ with a range of different fuel types. The Technology Development Centre for CO₂ Capture in Cubillos de Sil, Leon, was founded five years ago to promote economic development in the relatively poor region of Spain, with programmes covering the whole assessment, development and innovation stages and the complete R&D chain. CIUDEN - city of energy in Spanish, boasts the Museum of Energy and collaborating with several research organisations as well as from the Australian universities and researchers from other countries, to chemically analyse samples donated by the team to tackle some of the key outstanding issues associated with industries including coal mining, oil and gas extraction, and the conversion of existing coal-fired power stations to use.
The magazine is A4 and full colour throughout.

RATES

- **Double page spread:**
 - £6,995

- **Full page:**
 - £3,995

- **Outside Back/Inside Front Cover:**
 - £4,995

- **Inside Back Cover:**
 - £4,500

- **Half page:**
 - £2,995

- **Quarter page:**
 - £1,995

DIMENSIONS

- **Height x width**
 - **Bleed size:**
 - 303 x 426mm
 - **Trim size:**
 - 297 x 420mm
 - **Type area:**
 - 277 x 400mm

- **Full page:**
 - **Bleed size:**
 - 303 x 216mm
 - **Trim size:**
 - 297 x 210mm
 - **Type area:**
 - 277 x 190mm

- **Outside Back/Inside Front Cover:**
 - **Bleed size:**
 - 303 x 216mm
 - **Trim size:**
 - 297 x 210mm
 - **Type area:**
 - 277 x 190mm

- **Inside Back Cover:**
 - **Type area:**
 - 130 x 190mm

- **Landscape:**
 - **Type area:**
 - 130 x 190mm

- **Portrait:**
 - **Type area:**
 - 130 x 92mm

Preferred file formats

Our preferred format is high resolution PDF, the files should be supplied to the correct ad size as CMYK with fonts embedded and all elements set to 300 dpi.

E-mail

Email artwork to:
Keith Forward at
lordsidcup@hotmail.com
(if less than 15mb)

FTP site

Upload onto:
FTP name: ftp.doag.net
Username: fryebl476
Password: stuar942
Put files in the folder marked “www” inform Keith Forward at lordsidcup@hotmail.com

Publisher: Karl Jeffery
Tanker Operator
2nd Floor, 8 Baltic Street East,
London EC1Y 0UP, UK
Tel +44 (0)20 8150 5292
Fax +44 (0)20 7251 9179
Online, we can offer advertising in our website, newsletter (sent to over 8,000 people) and online social network.

In the newsletter, we can offer a large banner advert (350 x 150 pixels) which appears right at the top, beneath our logo but before the news, which links directly to your website.

On our website, we can offer a large banner advert (468 x 60) across the top of our home page and small banner adverts (180x60) at the side. The same advert will also appear whenever anyone reads a full news story (clicking on the headline in our e-mail newsletter), and on many other pages of the site.

Size options available are:

- Newsletter, 375 x 100 pixel banner, £2,000 per month (4 insertions)
- Carbon Capture Journal website pages, leaderboard (top of page), 728 x 90 pixel banner, £1950 per month
- All pages of website (including next to video), 4 x right hand slots 375 x 100 pixels, £1500 per month

Maximum file size 40kb, no flash

*All measurements are in pixels